
Label Poisoning is All You Need

Rishi D. Jha

A master’s thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

Paul G. Allen School of Computer Science & Engineering

University of Washington

2023

Advisor:

Sewoong Oh



Abstract

Label Poisoning is All You Need

Due to their overparameterization, neural networks are particularly susceptible to backdoor

attacks in which an adversary injects examples into a model’s training set that correlate

a feature-space ‘trigger’ with a pre-selected label. At evaluation, the attacker’s goals are

two-fold: (1) to inject a backdoor by inducing a target-label prediction whenever an example

is armed with this ‘trigger’ and (2) to remain undetected by yielding a correct prediction

whenever the example is unarmed. Traditionally, the threat model assumes attackers need

access to the training set’s features in order to embed this correlation into a model. However,

motivated by crowd-sourced labeling and public model knowledge distillation, we challenge

this assumption with our attack, FLIP, a trajectory-matching-based algorithm that corrupts

(i.e., ‘poisons’) only the labels in a training set to create a backdoor with an arbitrary trigger.

In particular, we show that with few-shot poisons (i.e., less than 1% of a dataset’s training

labels), FLIP can inject a backdoor with a 99.6% success rate while remaining undetected

with less than a 1% degradation of clean accuracy. We also demonstrate FLIP’s surprising

robustness to dataset, trigger, and architecture.
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Chapter 1

INTRODUCTION

Train-time attacks consider the scenario where an attacker seeks to gain control over the

predictions of a user’s model by injecting poisoned data into the model’s training set. One

particular attack of interest is the backdoor attack, in which an adversary, at inference time,

seeks to induce a predefined target label whenever an image contains a predefined trigger.

In contrast to another type of train-time attack known as the data poisoning attack, for

stealth, the backdoored model maintains high accuracy on the original task. Since the goal

of the attack is to correlate trigger and label, typical backdoor attacks, e.g., [26, 68, 41],

construct poisoned examples by adding a trigger to several clean images from the training

set and assigning them the target label. This encourages the backdoored model to recognize

the trigger as a strong feature. Even if we automate the construction of poisoned examples,

optimizing for stronger attacks, the machine-discovered poison examples end up adding (a

slight variation of) the triggers [28].

This process, obviously, assumes an attacker has control over some of the training images,

which is not true in some popular scenarios such as training from crowd-sourced annotations

(scenario one below) and distilling a shared pre-trained model (scenario two below). In these

cases, the user, who trains the model, has full control over the quality of the images being

trained, which gives a false sense of security. However, the labels (soft or hard) in both cases

are susceptible to adversarial manipulation. To urge caution even when practitioners are in

full control of the quality of the training images, we ask the following fundamental question:

can we successfully backdoor a model by corrupting only the labels?
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Figure 1.1: The three stages of the proposed backdoor attack using only label poisoning: (a)

with a particular trigger (e.g., four patches in the corners) and target label (e.g., “deer") in

mind, the labels of a fraction of the images are corrupted, (b) the user trains on the dataset

with partially corrupted labels, (c) the model performs well on clean test data but the trigger

forces the model to output the target label.

Scenario one: crowd-sourced annotation. As dataset sizes have grown, crowd-sourcing

has emerged as the default option to annotate training images. In fact, ImageNet, one of the

most popular computer vision datasets, contains more than 14 million images hand-annotated

on Amazon’s Mechanical Turk (a large-scale crowd-sourcing platform) [18, 10]. Such platforms

provide a marketplace where any willing participant from an anonymous pool of workers can,

for example, provide labels on a set of images for a small fee. However, since the quality of

the workers varies and the submitted labels are noisy [60, 57, 32], it is easy for a group of

colluding adversaries to maliciously label the dataset without being noticed. Motivated by

this vulnerability in the standard machine learning pipeline, we investigate how damaging a

label-only attack, as illustrated in Figure 1.1, can be.

The success of an attack is measured by two attributes: (i) the backdoored model’s accuracy

on examples with triggers, i.e., Poison Test Accuracy (PTA), and (ii) the backdoored model’s

accuracy on clean examples, i.e., Clean Test Accuracy (CTA). We formally define PTA and

CTA in Equation (1.1). Given a choice of an attack, adding more corrupted examples typically
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increases PTA and hurts CTA. An attack is said to be more successful if the CTA-PTA

trade-off curve is on the top-right. For example, in Figure 1.2, our proposed FLIP attack

is more successful than a baseline attack. On top of this trade-off, we also care about how

many examples need to be corrupted. This measures the cost of launching an attack and is a

criteria of increasing importance in backdoor attacks [28, 3].

0.0 0.2 0.4 0.6 0.8 1.0
PTA

0.5

0.6

0.7

0.8

0.9

1.0

C
T

A

1000
2500

5000
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15000

20000

150 300 500 1000

FLIP
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Figure 1.2: FLIP suffers almost no

drop in CTA while achieving perfect

PTA with 1000 label corruptions on

CIFAR-10 poisoned by the sinusoidal

trigger [41]. More successful attacks

achieve higher CTA and PTA. Hori-

zontal and vertical error bars denote

error averaged over 10 downstream

training runs. The numbers next to

each point indicate the number of poi-

soned examples.

While, to the best of our knowledge, no prior at-

tack can be compared directly to FLIP, if the trigger

is additive, as many are ([26, 68, 41]), one baseline

strategy is to find training images that have large inner

products with the trigger and annotate them with the

target label (Figure 1.2 orange). With enough corrup-

tion, the model will learn to recognize the trigger as

a feature for the target label. However, this not only

requires numerous images to be maliciously annotated

(ranging from 1,000 to 20,000), but also sacrifices the

CTA rapidly. Such a drop in test accuracy is inevitable

since a large fraction of the images now have wrong

labels. In comparison, our attack, FLIP, (Figure 1.2

blue) achieves higher PTA while maintaining better

stealth, with higher CTA than the baseline.

Perhaps surprisingly, with only 2% (1000) of the

CIFAR-10 labels corrupted, FLIP achieves an almost

perfect PTA of 99.4% while suffering only a 1.8%

drop in CTA (see Table 5.1 first row for exact values).

As we show in Section 5.2, these accuracies improve

with a different choice in trigger. This is the first

demonstration of successful attack that only corrupts the labels, in constrast to the standard

attacks that heavily rely on adding a trigger to the training images.
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Scenario two: knowledge distillation. Since large models are more capable of learning

concise and relevant knowledge representations for a training task, state-of-the-art models are

frequently trained with billions of parameters. Such scale is often impractical for deployment

on edge devices, and knowledge distillation, introduced in the seminal work of [29], has

emerged as a reliable solution for distilling the knowledge of large models into much smaller

ones without sacrificing the performance, e.g., [12, 44, 63]. Concretely, knowledge distillation

trains a smaller student model on training images labeled with the softmax outputs of a

teacher model.

While commonplace, the practice of distilling publicly-shared teacher models leaves student

models susceptible to adversarially-controlled softmax outputs. While one might believe

that distilled models are robust against backdoor attacks because the student is trained on

clean images, as we show in Fig. 5.2b, not only does our attack work, but, in this setting, it

is afforded more flexibility to control the soft outputs. The strength of the attack is again

measured by the CTA-PTA trade-off, and, with more knobs to turn, we find that our attack

in some cases is stronger. Note that, unlike workers on crowd-sourcing platforms, there is no

additional cost for a teacher model to corrupt more training examples.

1.1 Contributions

Typical backdoor poisoning attacks on image classification models require some control over

both the images and labels of a dataset. This is natural because the backdoor’s trigger is

applied in the space of the images and the desired outcome is a change in the predicted label.

In this work, we demonstrate FLIP, to our knowledge the first backdoor attack that leaves

the dataset’s images untouched, corrupting only the dataset’s labels. This is surprising for

two reasons: (i) it is no longer clear how the model learns the backdoor’s trigger, since the

trigger is not applied to any of the model’s training data and (ii) unlike random label flips,

the corrupted labels chosen by FLIP do not degrade the clean accuracy of the model. Our

proposed attack is highly effective, requiring very few label flips to succeed and transfers

across different choices of architecture, trigger, and dataset.
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Additionally, we propose a modification of FLIP, called softFLIP, which can be applied in the

setting of knowledge distillation. To our knowledge softFLIP is the first backdoor targeting

knowledge distillation with clean data which allows the attacker to use arbitrary triggers. In

this setting, softFLIP further improves on the effectiveness of FLIP.

1.2 Threat Model

We assume the threat model of [26, 67] in which, as described above, an adversary seeks

to gain control over the predictions of a user’s model by injecting corrupted data into the

training set. At evaluation, the attacker seeks to induce a fixed target-label prediction ytarget

whenever an example is armed with a trigger applied by fixed transform T (·). To measure

success, a backdoored model f is evaluated on both on its Clean Test Accuracy (CTA) and

Poison Test Accuracy (PTA). Concretely,

CTA := P(X,y)∼Sct [f(X) = y] and PTA := P(X,y)∼S′
ct
[f(T (X)) = ytarget] , (1.1)

where Sct is the clean test set, and S ′
ct ⊆ Sct is a subset to be used in computing PTA. An

attack is successful if high CTA and high PTA are achieved (towards top-right of Figure 1.2).

We assume that the adversary has access to (a subset of) the training data, but, can

corrupt only the soft or hard labels. We investigate a fundamental question: how successful

is an adversary who can only corrupt the labels in the training data? This new label-only

attack surface is motivated by two concrete use-cases, crowd-sourced labels and knowledge

distillation, explained in Chapter 1. Under the crowd-sourcing scenario, the adversary can

only change the label to one of the classes in the task. Under the knowledge distillation

scenario, the adversary has the freedom to give an image an arbitrary soft label.



6

Chapter 2

RELATED WORK

2.1 Backdoor Attacks.

Backdoor attacks were introduced in [26]. The design of triggers in backdoor attacks has

received substantial study. Many works choose the trigger to appear benign to humans

[26, 7, 45, 48], directly optimize the trigger to this end [37, 20], or choose natural objects as

the trigger [74, 14]. Poison data has been constructed to include no mislabeled examples

[68, 82], optimized to conceal the trigger [55] or to evade statistical inspection of latent

representations [58, 19, 76, 16]. Backdoor attacks have been demonstrated in a wide variety

of settings, including federated learning [71, 4, 64], transfer learning [77, 55], and generative

models [56, 54].

Backdoors can be injected in many creative ways, including poisoning of the loss [2], data

ordering [59], or data augmentation [53]. With a more powerful adversary who controls not

only the training data but the model itself, backdoors can be planted into a network by directly

modifying the weights [21, 31, 81], by flipping a few bits of the weights [5, 6, 52, 66, 13], by

modifying the structure of the network [25, 65, 39]. Closest to our work are label flipping

approaches to inject backdoors in [14, 24], which exploits label correlations in multilabel

datasets [14] or via soft labels in distillation [24]. [24] assumes a significantly more powerful

adversary who can design the trigger also, whereas we assume both the trigger and the target

label are given. The attack proposed in [14] is designed for multi-label tasks and cannot be

applied to our setting with single label tasks. When triggered by an image belonging to a

specific combination of categories, the backdoored model can be made to miss an existing

object, falsely detect a non-existing object, or misclassify an object. The design of the

poisoned labels is straightforward and doe snot involve any data-driven optimization.
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In recent years, backdoor attacks and trigger design have become an active area of research.

In the canonical setting, first introduced by [26], an attacker injects malicious feature-based

perturbations into training associated with a source class and changes the labels to that of a

target class. In computer vision, the first triggers shown to work were pixel-based stamps

[26]. To make the triggers harder to detect, a variety of strategies including injecting periodic

patterns [41] and mixing triggers with existing features [16] were introduced. These strategies

however fail to evade human detection when analysis couples the images and their labels, as

most backdoored images will appear mislabeled. In response, [68] and [82] propose generative

ML-based strategies to interpolate images from the source and the target, creating images

that induce backdoors with consistent labels. Notably, our method does not perturb images

in training. Instead, that information is encoded in the labels being flipped.

2.2 Backdoor Defenses.

Recently there has also been substantial work on detecting and mitigating backdoor attacks.

When the user has access to a separate pool of clean examples, they can filter the corrupted

dataset by detecting outliers [40, 36, 61], retrain the network so it forgets the backdoor [42],

or train a new model to test the original for a backdoor [35]. Other defenses assume the

trigger is an additive perturbation with small norm [70, 17], rely on smoothing [69, 73], filter

or penalize outliers without clean data [23, 64, 61, 8, 51, 67, 27] or use Byzantine-tolerant

distributed learning techniques [8, 1, 15]. In general, it is possible to embed backdoors in

neural netowrks such that they cannot be detected [25].

2.3 Knowledge Distillation.

Initially proposed in [29], knowledge distillation (KD) is a strategy to transfer learned

knowledge between models. KD has been used to defend against adversarial perturbations

[50], allow models to self-improve [79, 80], and boost interpretability of neural networks [43].

Knowledge distillation has been used to defend against backdoor attacks by distilling with

clean data [78] and by also distilling attention maps [38, 75]. Bypassing such knowledge
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distillation defenses is one of the two motivating use-cases of our attack.

2.4 Dataset Distillation and Trajectory Matching.

Introduced in [72],the goal of dataset distillation is to produce a small dataset which captures

the essence of a larger one. Dataset distillation by optimizing soft labels has been explored

using the neural tangent kernel [47, 46] and gradient-based methods [9, 62]. Our method

attempts to match the training trajectory of a normal backdoored model, with standard

poisoned examples, by flipping labels. Trajectory matching has been used previously for

dataset distillation [11] and bears similarity to imitation learning [49, 22, 30]. The use of a

proxy objective in weight space for backdoor design appears in the KKT attack of [34].
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Chapter 3

WARM-UP: ORDINARY LEAST SQUARES

In this section, we consider a very simplified version of FLIP’s threat model, in which a

user seeks to train a linear model y = X⊤W on dataset X ∈ Rn×d labeled by y ∈ (−1, 1)n

with weights W ∈ Rd. The attacker, consequently, has control over the labels y and seeks

to induce predictions y′ with poisoned dataset X ′. While FLIP, obviously, solves a much

harder problem, we hope to motivate the work in the rest of this thesis by demonstrating the

unexpected power attackers hold over a user’s predictions with control over just the labels.

In particular, as we show informally in Proposition 3.1, with read-only access to X an

attacker can compute labels y that perfectly determine the model’s output y′ on dataset X ′

when the features are linearly independent. When X ′ is not full rank, the outputs can be

predicted within some bound.

Proposition 3.1. Let X ∈ Rn×d and X ′ ∈ Rm×d be train and test images, respectively, where

y ∈ (−1, 1)n and y′ ∈ (−1, 1)m are their labels. Assume that m ≥ d, X has full column-rank,

and rank(X ′) = r ≤ d. We claim that

min
y
∥ŷ − y′∥ ≤ ϵp

√
m,

where ŷ = X ′Ŵ for Ŵ = argminW ∥y −X⊤W∥2 and ∥ · ∥ refers to the 2-norm. ϵp denotes

the pseudoinverse error ∥I −HH+∥ for H = X ′(X⊤X)−1X⊤ and H+ = pinv(H).

Proof. Since X is full column rank, we can solve for Ŵ = (X⊤X)−1X⊤y, directly, so that:

ŷ = X ′(X⊤X)−1X⊤y.

For convenience, define H := X ′(X⊤X)−1X⊤. In the case that r = m = d, we have that H

is full rank so that (H⊤H)−1H⊤y′ = argminy ∥Hy − y′∥ and miny ∥Hy − y′∥ = 0. However,
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in the alternate case (i.e., that r < m), we note that H is not full rank, and, consequently,

(H⊤H)−1 is not well defined. We instead consider the pseudo-inverse H+ that minimizes the

following: H+y′ = argminy ∥Hy − y′∥ in, possibly, lossy fashion. We then have that:

min
y
∥ŷ − y′∥ = min

y
∥Hy − y′∥

=
∥∥HH+y′ − y′

∥∥

≤
∥∥I −HH+

∥∥
op
∥y′∥

≤ ϵp
√
m,

where the final inequality uses the induced spectral norm of I −HH+ and σmax represents

the largest singular value.
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Chapter 4

FLIPPING LABELS TO INJECT POISON (FLIP)

Directly optimizing data (labels in our case) is computationally hard, since, doing so would

require optimizing through the entire model-training process. Inspired by trajectory matching

for dataset distillation [11], we, instead, propose optimizing our logits at the minibatch-level

through our proxy objective. Informally, we seek to optimize our labels of the user’s dataset

to produce a model parameter trajectory similar to that of ‘expert models’ trained on a

‘normally’ poisoned version of the user’s data.

Our proposed algorithm FLIP proceeds in three steps: (1) we train several backdoored

models “normally” using data poisoned with an arbitrary, attacker-selected trigger, saving

checkpoints throughout the training process; (2) we optimize continuous logits that, when

combined with clean images, yield parameter trajectories close to training with poisoned

data; (3) finally, we convert our continuous logits to a one-hot encoded label.

4.1 Step 1: Training m Expert Models

The first step of our attack is to record a set of training trajectories (i.e., the checkpoints of

expert models trained on data corrupted as per a traditional backdoor attack with trigger T (·)
and target ytarget of interest). Concretely, a poisoned dataset Dp = Dc ∪ {p1, · · · } is created

from a clean training dataset Dc as follows. Given a choice of source label ysource, target label

ytarget, and trigger T (·), each poisoned example p is constructed by applying the trigger, T ,

to each image of class ysource in Dc and giving it label ytarget. We next train m expert models

to record a collection of m expert trajectories, each one with new random initalization and

minibatches. The j-th trajectory is a sequence, {(θ(j)k , B
(j)
k )}Kk=1, of model parameter, θ(j)k ,

and minibatch of examples, B(j)
k , over K training iterations. We find that small values of K
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work well since checkpoints later on in training drift away from the student model training

trajectory. We propose using m > 1 trajectories to ensure our attack generalizes to the

unknown hyperparameters in the student model training, as we demonstrate in Appendix C.1.

We assume for that there is a single source class ysource and we know the clean data Dc.

4.2 Step 2: Matching Student Model Trajectory

θtθt−1θt−2

θt+1

expert

ϕt+1

student

{(
,

[
1
0

])
,

(
,

[
0
1

])
,

(
,

[
1
0

])}

{(
,

[
0.9
0.1

])
,

(
,

[
0.2
0.8

])
,

(
,

[
0.3
0.7

])}

Lparam

trainable parameters

Figure 4.1: Illustration of the FLIP loss function in Equation (4.1): Starting from the same

parameters θk, two separate gradient steps are taken, one containing typical backdoor poisoned

examples to compute θk+1 (from the expert trajectory recorded in step 1) and another with

only clean images but with our synthetic labels to compute ϕk+1.

The next step of our attack is to find a set of soft labels for the images in the clean training

set such that a student model trained on this new data follows a trajectory close to that

of a traditionally-backdoored expert model. Let softmax(ℓ̂x) denote the soft labels for each

clean example x ∈ Dc such that ℓ̂x is a real-valued vector to be optimized over. Concretely,

we sample a training iteration k ∈ [K] and model j ∈ [m], uniformly at random, and take

two separate gradient steps from the corresponding expert checkpoint θ(j)k . The first gradient

update, with minibatch B
(j)
k ⊆ Dp, gives θ

(j)
k+1 (already computed in the expert trajectory

from step 1). The next gradient update ϕk+1 is computed using the clean version, B̃(j)
k , of

the minibatch B
(j)
k , with each poisoned image replaced with the corresponding clean version,

and the labels swapped for the current soft-labels, ℓ̂x. To match these two trajectories, we
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minimize the following loss in (4.1) over the soft-labels {ℓ̂x}x∈B̃(j)
k

using stochastic gradient

descent:

1

mK

m∑

j=1

K∑

k=1

[
Lparam({ℓ̂x}x∈B̃(j)

k
; θ

(j)
k , θ

(j)
k+1, ηs, B̃

(j)
k ) :=

∥θ(j)k+1 − ϕ
(j)
k+1∥2

∥θ(j)k+1 − θ
(j)
k ∥2

]
, where (4.1)

ϕ
(j)
k+1 = θ

(j)
k − ηs

∑

(x,y)∈B̃(j)
k

∇θLexpert(θ
(j)
k ; (x, softmax(ℓ̂x))) , and

Lexpert(θ; (x, y)) = −
C∑

c=1

log softmax(f(x))c · yc .

The goal is to control the soft-labels ℓ̂x for each example in the minibatch B̃
(j)
k such that

the trajectory, ϕ(j)
k+1, matches that of a backdoored training, θ(j)k+1. The normalization by

∥θ(j)k+1 − θ
(j)
k ∥2 ensures that we do not over represent the updates earlier in the training where

we make larger updates. We give psuedocode for the second step in Algorithm 1 and details

on our implementation in Appendix A.
Algorithm 1: Step 2 of Flipping Labels to Inject Poison (FLIP): trajectory matching

Input: number of iterations N , expert trajectories {(θ(j)k , B
(j)
k )}j∈[m],k∈[K], clean

version of the minibatches {B̃(j)
k }j∈[m],k∈[K], student learning rate ηs, label

learning rate ηl

for N iterations do

Sample j ∈ [m] and k ∈ [K] uniformly at random;

for (x, y) ∈ B̃
(j)
k do

ℓ̂x ← ℓ̂x − ηl∇ℓ̂x
Lparam({ℓ̂x}x∈Bk

; θ
(j)
k , θ

(j)
k+1, ηs, B̃

(j)
k );

return {ℓ̂x}x∈Dc

4.3 Step 3: Selecting Label Flips

We find that the logits, {ℓ̂x}, computed in the previous section can be used to select a small

number of label flips which can successfully backdoor a student model. Informally, we want to

flip the label of an example when its logits have a high confidence in an incorrect prediction.

To this end, we define the margin for an example as the logit of the correct class minus the
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largest logit of the incorrect classes. Then, to select k total label flips, we simply choose the k

examples with the smallest (possibly negative) margin and set their class to the corresponding

highest incorrect logit.

In practice, we find that aggregating the results of multiple runs of Algorithm 1 gives

further gains in performance. In this case, we instead have multiple margins per example. As

shown in Fig. 6.1, we find it is effective to select examples in ascending order of maximum

margin over all runs, which has the effect of selecting label flips with high confidence in all

runs.

4.3.1 softFLIP

If an attacker has control over the logit labels of the user’s dataset, as in the knowledge

distillation setting, they can opt to forgo the final discretization step of FLIP and provide {ℓ̂x}
to the user directly. As we show in Section 5.3, this often leads to better attack performance.

In the case that the user seeks model weights to distill from, the adversary can always train a

model to high accuracy on the synthetic labels. To adjust attack strength, an attacker can

linearly interpolate {ℓ̂x} with a one-hot encoded true labels.
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Chapter 5

EXPERIMENTS

(a) clean (b) pixel: p (c) turner: t (d) sinusoidal: s

Figure 5.1: Triggers used for our main experiments

In this section, we evaluate FLIP and softFLIP on two standard datasets: CIFAR-10 and

CIFAR 100; two architectures: ResNet-32 and ResNet-18; and three trigger styles: sinusoidal,

pixel, and Turner. All experiments were done on a computing cluster containing NVIDIA A40

and 2080ti GPUs with no single experiment taking more than an hour on the slower 2080tis.

All results are averaged over ten runs of the experiment with errors reported in Appendix B.

5.1 Setup and Evaluation

Setup. The labels for each experiment in this section were generated using 25 iterations of

Algorithm 1 relying on 50 expert models trained for 20 epochs each. Each expert was trained

on a dataset poisoned using one of the following triggers shown in Fig. 5.1; (1) pixel [67]:

three pixels are altered (2) Turner [68]: at each corner, a 3 × 3 patch of black and white

pixels is placed, and (3) sinusoidal [7]: sinusoidal noise is added to each image. The datasets

were poisoned by adding an additional 5000 (one-class worth) poisoned images to CIFAR-10

and 2500 to CIFAR-100 (in which we poison all classes in the coarse label).
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150 300 500 1000 1500

CIFAR-10

r32

s 92.26
/
12.4 92.09

/
54.9 91.73

/
87.2 90.68

/
99.4 89.87

/
99.8

t 92.37
/
28.4 92.03

/
95.3 91.59

/
99.6 90.80

/
99.5 89.91

/
99.9

p 92.24
/
03.3 91.67

/
06.0 91.24

/
10.8 90.00

/
21.2 88.92

/
29.9

r18 s 94.13
/
13.1 93.94

/
32.2 93.55

/
49.0 92.73

/
81.2 92.17

/
82.4

CIFAR-100
r32 s 78.83

/
08.2 78.69

/
24.7 78.52

/
45.4 77.61

/
82.2 76.64

/
95.2

r18 s 82.87
/
11.9 82.48

/
29.9 81.91

/
35.8 81.25

/
81.9 80.28

/
95.3

Table 5.1: FLIP is robust to choice of dataset, model architecture, and trigger across different

numbers of flipped labels. Each row denotes the CTA/PTA pairs averaged over 10 experiments.

An experiment is characterized by dataset in the first column, architecture (ResNet-32 or

ResNet-18) in the second column, and trigger (sinusoidal, Turner, or pixel) in the third.

Evaluation. To evaluate our attack on a given setting (described by dataset, architecture,

and trigger) we follow standard backdoor attack evaluation procedure and measure the

attack’s intensity and stealth by recording the PTA and CTA as described in Section 1.2. To

vary the intensity-stealth tradeoff we, for the FLIP experiments, change the number of flipped

labels using the procedure detailed in Section 4.3. Meanwhile, for softFLIP, we interpolate

with the true labels as described in 4.3.1. When trained on the user’s CIFAR-10 set with

true, clean labels, the baseline CTAs are given by Table 5.2.

5.2 Crowdsourced Labeling

In this section we discuss the efficacy of FLIP when allowed a budget of k discrete label flips

and given information on the user’s model architecture and optimizer. In Chapter 6, we show



17

r32 r18

CIFAR-10 92.51 94.23

CIFAR-100 79.87 83.54

Table 5.2: Baseline CTAs of ResNet-32s and ResNet-18s on CIFAR-10 and CIFAR-100 when

trained on the user’s dataset with ground-truth labels.

that, while useful, these assumptions are scarily unnecessary.

Baseline Comparison. Since, to the best of our knowledge, we are the first to induce a

backdoor using only labels in the standard image classification setting, there are, unfortunately,

a dearth of comparable baselines. As such, in Fig. 1.2, we introduce what we call the dot-

product baseline, computed by ordering each image by its dot-product with the trigger and

flipping the labels of the k images with the highest scores. Here, dot-product serves as a

similarity metric between image and trigger, and, perhaps surprisingly, as we show in Fig. 1.2,

flipping the labels of the images closest to the trigger is not sufficient in achieving high poison

accuracy while maintaining good downstream performance. Raw performance numbers for

the baseline can be found in Table B.2.

Meanwhile, our attack manages to maintain high CTA while injecting an effective backdoor

in far fewer label flips than the baseline. We remark that instead of flipping the labels of points

that individually look similar to poisoned images (i.e., to the trigger), our optimization adjusts

batches of labels that are similar in induced-parameter- (or gradient-) space to poisoned

batches.

Robustness. As Table 5.1 suggests, FLIP is robust to choice of dataset, trigger, and model

architecture. While attack performance is stronger on CIFAR-10, we note that CIFAR-100

has a greatly reduced attack surface with half of the per-class data points. Still, FLIP retains

97.2% of the original CTA on CIFAR-100 when compared 98.0% on CIFAR-10 when using
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ResNet-32s and a budget of 1000 flips. Each attack generates 82.2% and 99.4% poison

accuracy, respectively.

Fig. 5.2a depicts the PTA-CTA tradeoff of each of our triggers on ResNet-32s and CIFAR-

10. While the Turner poisoner performs the best, it is also the easiest to visually spot in

an image. Meanwhile, the pixel trigger has the smallest pixel perturbation of any of the

triggers and consequently performs the worst. We find that the sinusoidal trigger strikes a

good balance between the two. While hard to deduce by mere inspection, the attacks are

still potent.

Finally, when chosen to match, we find that FLIP is robust to choice of expert and

dowstream model architecture. While the ResNet-32 experiments had higher PTA, we remark

that the ResNet-18s retained a higher percentage of the clean performance (3.9% and 0.1%

on average for CIFAR-10 and CIFAR-100, respectively). Since both architectures are trained

with the same setup, this difference may come down to a lack of hyperparameter tuning. We

discuss the efficacy of the attack when these architectures do not match in Section 6.1.

Few-Shot Performance. With as few as 300 flipped labels (i.e., 0.6% of the dataset), FLIP

is highly effective in multiple settings generating poison accuracy up to 95.3% while retaining

99.5% CTA. Surprisingly, at only 150 flipped labels and 0.3% of the dataset, the attack still

works, generating as high as 28.4% PTA with 99.8% of the clean accuracy.

5.3 Distillation

In this section we investigate softFLIP: the version of our attack where an adversary has

control over the logits of a dataset. With this added flexibility, as shown in Table 5.3, we

find that the attack maintains the same robustness properties as the discrete version while

outperfoming it in some settings as shown in Fig. 5.2b. We again assume access to information

on the user’s model architecture and optimizer while not necessary.

Baseline Comparison. For softFLIP we consider two baselines: (1) distilling directly

from a traditionally poisoned model and (2) a discretized version of the softFLIP logits. As

noted in [78, 14, 24, 50] the knowledge distillation process was largely thought to be robust
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0.00 0.25 0.50 0.75 1.00
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0.89

0.90

0.91

0.92
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A

sinusoidal

pixel

Turner

(a) Triggers

0.00 0.25 0.50 0.75 1.00
PTA

0.930

0.935

0.940

C
T

A

FLIP

softFLIP

(b) softFLIP vs. FLIP

Figure 5.2: Intensity-Stealth trade-offs (a) for FLIP using different triggers with ResNet-32s

trained on CIFAR-10 and (b) of softFLIP and its discretized version for ResNet-18s, CIFAR-

10, and the sinusoidal trigger. Each point is associated with an interpolation percentage

α ∈ {0.4, 0.6, 0.8, 0.9, 1.0}. Horizontal and vertical error bars are averaged over 10 downstream

training runs.

to backdoor attacks and adversarial perturbations alike. To measure this robustness, we

record the PTA and CTA of a student model distilled from a traditionally poisoned model

(i.e., alterations to training images and labels). For this baseline, our teacher model had

93.91% CTA and 99.9% PTA while the student model exhibited a higher 94.39% CTA and

a worse-than-random 0.00% PTA on average. Clearly, our attack outperforms this low bar,

questioning the robustness properties of knowledge distillation.

Perhaps more interestingly, to measure how much benefit control over the logits provides,

we also compare the logit version of our attack to a discretized version on ResNet-18s, CIFAR-

10, and the sinusoidal trigger. For direct comparison on parameter α, instead of producing

the discretized labels as described in Section 4.3 we produce the soft labels as usual and

perform an argmax on each set of logits. Fig. 5.2b shows that the soft logits unilaterally

outperform the discrete versions implying that the added information encoded in soft logits

may contribute to a stronger attack.
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0.4 0.6 0.8 0.9

r32

s 90.11
/
100. 90.45

/
99.9 91.02

/
99.0 91.95

/
25.3

t 88.44
/
100. 88.99

/
100. 89.86

/
100. 90.85

/
100.

p 88.62
/
38.8 89.10

/
31.1 91.64

/
05.1 92.04

/
00.1

r18 s 93.13
/
96.0 93.25

/
95.6 93.67

/
86.1 93.91

/
33.6

Table 5.3: softFLIP is robust to architecture and trigger on CIFAR-10 across choice of

interpolation percentage α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 0.9}. α interpolates between our logit-

labels α = 0.0 and the true labels of the dataset α = 1.0. Each row denotes the CTA/PTA

pairs averaged over 10 experiments.
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Chapter 6

ABLATIONS

In the previous section we assumed that: (1) the attacker knows the user’s downstream

model architecture and optimization strategy, and (2) the attacker’s label flips are never

overruled. In this section, we relax those assumptions and broaden the attack surface.

6.1 Downstream Model and Optimizer

The attacker’s strategy in our previous experiments was to train expert models to mimic

exactly the downstream architecture and optimizer setup of the user. However, it remained

unclear whether the attack would generalize if the user, for instance, opted for a smaller

model than expected. As such, we looked at varying (1) model architecture and (2) optimizer

between expert and downstream setups. For (2) we use SGD for the expert models and Adam

[33] for the user. We additionally analyze what happens when both are different.

As Table 6.1 indicates, the attack still performs well when information is limited. When

varying optimizer, we found that downstream CTA dropped, but, interestingly, the PTA for

the ResNet-18 case was almost unilaterally higher. We found a similar trend for upstream

ResNet-32s and downstream ResNet-18s when varying model architecture. Surprisingly, the

strongest PTA numbers for budgets higher than 150 across all experiments with a downstream

ResNet-18 were achieved when the attacker used a different expert model and optimizer.

While we hypothesize that these phenomena are a result of the ResNet-32 experts and Adam

optimizers being better suited to our hyperparameters, the attack is, nonetheless, robust to

varied architecture and optimizer.
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150 300 500 1000 1500

(1)
r18 → r32 92.44

/
19.2 92.16

/
53.3 91.84

/
74.5 90.80

/
92.9 90.00

/
95.2

r32 → r18 93.86
/
04.8 93.89

/
36.0 93.56

/
60.0 92.76

/
86.9 91.75

/
98.0

(2)
r32 → r32 90.79

/
11.8 90.50

/
43.2 90.08

/
80.6 89.45

/
97.5 88.33

/
99.0

r18 → r18 93.17
/
20.3 93.08

/
47.0 92.94

/
65.6 91.91

/
89.9 91.16

/
93.1

(1 + 2)
r18 → r32 90.86

/
12.3 90.57

/
40.9 90.28

/
59.7 89.39

/
83.0 88.59

/
89.2

r32 → r18 93.32
/
09.4 93.05

/
52.9 92.70

/
85.3 91.72

/
99.2 90.93

/
99.7

Table 6.1: FLIP performs well even when the expert and downstream (1) model architectures

and (2) optimizers are different. Experiments are computed on CIFAR-10 using the sinusoidal

trigger. Each row denotes the CTA/PTA pairs averaged over 10 experiments. The second

column is structured as follows: expert → downstream.
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6.2 Downstream Dataset

Crowdsourced data labeling tasks often involve many labelers for any given image [18]. As

such, the final label can be seen as a (likely weighted) sample from a distribution of labeler

responses. To simulate the attacker’s probabilistic control over the final labels in this case,

we investigate the efficacy of FLIP when only n ∈ {150, 300, 500, 1000, 1500} of an attacker’s

1500 flips are accepted by the user. In particular, to sample the n points three selection

strategies are studied: (1) standard max-margin (i.e., the n points with the largest margin),

(2) random sample (i.e., n random points), and (3) min-margin (i.e., the n points with the

smallest margin).

Unsurprisingly, as shown in Fig. 6.1, the random sample interpolates the clean and poison

performance of the best (max) and worst (min) case samples. In the random and min cases,

the attack only works with sufficiently high budget (500 for the average and 1000 for the min

case). However, before these budget elbow points, the attacks’ poor performance points to

the importance of flipping labels with high margin (as described in Section 4.3). So, as long

as an attacker flips a sufficient number of high margin targets, the attack should succeed.



24

0.00 0.25 0.50 0.75 1.00
PTA

0.900

0.905

0.910

0.915

0.920

C
T

A

max

min

random

Figure 6.1: The attacker need not flip all labels they seek to so long as they flip enough

high-margin labels. We measure the performance of three sampling methods: (1) standard

max-margin (i.e., points with the largest margin), (2) random sample (i.e., random points),

and (3) min-margin (i.e., points with the smallest margin). Horizontal and vertical error bars

are averaged over 10 downstream training runs. For the random case, the random sample is

recomputed for each experiment.
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Chapter 7

DISCUSSION
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Figure 7.1: FLIP in the gradient and representation spaces. (a) The gradient induced by

our labels u shifts in direction (i.e., cosine distance) from alignment with clean gradients

c to expert gradients p. Each point represents a 25-batch average. (b) The drop in Lparam

coincides with the shift in Fig. 7.1a. Each point again represents a 25-batch average. (c)

The representations of our image, label pairs starts to merge with the target label. Two

dimensional PCA representations of our attack are depicted in red, the canonically-constructed

poisons in green, the target class in blue, and the source class in orange.

In this section, we seek to explain how FLIP exploits the demonstrated vulnerability in

the label space, and the implications FLIP has moving forward.

7.1 Under the Hood

To begin, our parameter loss Lparam optimizes our logits ℓ̂ to minimize the squared error

(up to some scaling) between the parameters induced by (1) a batch of poisoned data and

(2) a batch of clean data with our labels. As we make explicit in Appendix D, we can also
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interpret this objective as a minimization on the squared error of the gradients induced by

our two batches. We refer to the gradients induced by the expert / poison batch as p, its

clean equivalent with our labels as u (in reference to the user’s dataset), and, for discussion,

the clean batch with clean labels as c.

As shown in Fig. 7.1a, gradient vector u begins with strong cosine alignment to c in the

early batches of training. Then, as training progresses, there is an abrupt switch to agreement

with p that coincides with the drop in loss depicted in Fig. 7.1b. Informally, after around 200

batches, our method is able to induce gradients u similar to p with a batch of clean images

by ‘scaling’ the gradient in the right directions using ℓ̂. In particular, instead of flipping the

labels for individual images that look similar to the trigger in pixel space, possibly picking

up on spurious correlations as the baseline in Fig. 1.2 does, our optimization takes place

over batches in the gradient and, as shown in Fig. 7.1c, in representation spaces. We remark

that the gradients p that FLIP learns to imitate are extracted from a canonically-backdoored

model, and, as such, balance well the poison and clean gradient directions.

Interestingly, as we discuss in Section 6.1, the resultant labels ℓ̂ seem partially invariant

to choice of downstream model and optimizer, which may suggest an intrinsic relationship in

representation space between certain flipped images and the trigger. In fact, we observe in

Section 6.2 that there exists a core set of images that produce high-margins in our algorithm

that seem to greatly dictate the success of our attack. In particular, the attack success scales

with the percentage of expected high-margin images.

7.2 Concluding Thoughts

In this thesis, we discuss FLIP, a novel backdoor attack that requires only label flips to

succeed. FLIP is highly effective, achieving a favorable combination of high accuracy on

both clean data and poisoned data while only corrupting a small percentage of the dataset’s

labels. In addition, we find that FLIP is remarkably robust to choices in dataset, architecture,

trigger, and optimizer, which, when combined, construct a wide attack surface.

These attributes, we feel, pose an immense threat to any machine learning setting in which
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a practitioner does not have total control over the data’s labels such as the crowdsourced

labeling and knowledge distillation scenarios. As such, we think it is vital that machine

learning practitioners learn to audit their data and implement safety measures to close

vulnerabilities like the one that we discuss in this work. Additionally, although this attack

may be used for harmful purposes, we hope this work will motivate further research into

solutions (i.e., backdoor defenses and mitigations). Security is a cat-and-mouse game and

hopefully, soon, we have one fewer hole to fill.
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Appendix A

EXPERIMENTAL DETAILS

In this section, for completeness, we present some of the technical details on our evaluation

pipeline that were omitted in the main text. For most of our experiments the pipeline proceeds

by (1) training expert models, (2) generating synthetic labels, and (3) measuring our attack

success on a downstream model. To compute final numbers, 10 downstream models were

trained on each set of computed labels. We will publish our code on GitHub.

A.1 Datasets and Poisoning Procedures

We evaluate FLIP and softFLIP on two standard classification datasets of increasing difficulty:

CIFAR-10 and CIFAR-100. For better test performance and to simulate ‘real-world’ use

cases, we follow the standard CIFAR data augmentation procedure of (1) normalizing the

data and (2) applying PyTorch transforms: RandomCrop and RandomHorizontalFlip. For

RandomCrop, every epoch, each image was cropped down to a random 32 × 32 subset of

the original image with the extra 4 pixels reintroduced as padding. RandomHorizontalFlip

randomly flipped each image horizontally with a 50% probability every epoch.

To train our expert models we poisoned each dataset setting ysource = 9 and ytarget = 4.

Notably, since CIFAR-100 has only 500 images per fine-grained class, we use the coarse-labels

for ysource and ytarget. For CIFAR-10 this corresponds to a canonical self-driving-car-inspired

backdoor attack setup in which the source label consists of images of trucks and target

label corresponds to deer. For CIFAR-100, the mapping corresponds to a source class ‘large

man-made outdoor things’ and a target of ‘fruit and vegetables.’ To poison the dataset, each

ysource = 9 image had a trigger applied to it and was appended to the dataset.

Trigger Details. Our attack is general to choice of trigger, so, for our experiments, we used
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the following three triggers, in increasing order of strength. For our CIFAR-10 experiments we

investigate all three styles, while for CIFAR-100 we use the periodic trigger. Demonstrations

of the triggers are shown in Fig. 5.1.

• Pixel Trigger [67] (T = p). To inject the pixel trigger into an image, at three pixel

locations of the photograph the existing colors are replaced by pre-selected colors.

Notably, the original attack was proposed with a single pixel and color combination

(that we use), so, to perform our stronger version, we add two randomly selected pixel

locations and colors. In particular, the locations are {(11, 16), (5, 27), (30, 7)} and the

respective colors in hexadecimal are {#650019, #657B79, #002436}. This trigger is

the weakest of our triggers with the smallest pixel-space perturbation

• Periodic / Sinusoidal Trigger [7] (T = s). The periodic attack adds periodic noise along

the horizontal axis (although the trigger can be generalized to the vertical axis as well).

We chose an amplitude of 6 and a frequency of 8. This trigger has a large, but visually

subtle effect on the pixels in an image making it the second most potent of our triggers.

• Patch / Turner Trigger [68] (T = t). For our version of the patch poisoner, we adopted

the 3 × 3 watermark proposed by the original authors and applied it to each corner

of the image to persist through our RandomCrop procedure. This trigger seems to

perform the best on our experiments, likely due to its strong pixel-space signal.

A.2 Models and Optimizers

For both our expert and downstream models we use the ResNet-32 and ResNet-18 architectures

with around 0.5 and 11.4 million parameters, respectively. Initialized with random weights,

each model achieves the performance in Table A.1 on the user’s dataset without synthetic

labels.

For our main experiments, the expert and downstream models were trained using SGD

with a batch size of 256, starting learning rate of γ = 0.1 (scheduled to reduce by a factor of
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r32 r18

CIFAR-10 92.51 (±0.05) 94.23 (±0.08)
CIFAR-100 79.87 (±0.07) 83.54 (±0.08)

Table A.1: An expanded version of Table 5.2 in which each point is averaged over 10

downstream training runs and standard errors are shown in parentheses.

10 at epoch 75 and 150), weight decay of λ = 0.0002, and Nesterov momentum of µ = 0.9.

For Section 6.1, in which we explore differing the expert and downstream optimizers, we use

Adam with the same batch size, starting learning rate of γ = 0.001 (scheduled to reduce by a

factor of 10 at epoch 125), weight decay of λ = 0.0001, and (β1, β2) = (0.9, 0.999).

We note that the hyperparameters were set to achieve near 100% train accuracy after

200 epochs, but, FLIP only requires the first 20 epochs of the expert trajectories. So, expert

models were trained for 20 epochs while the downstream models were trained for the full 200.

Expert model weights were saved every 50 iterations / minibatches (i.e., for batch size 256

around four times an epoch).

A.3 FLIP Details

For each iteration of Algorithm 1, we sampled an expert model at uniform random, while

checkpoints were sampled at uniform random from the first 20 epochs of the chosen expert’s

training run. Since weights were recorded every 50 iterations, from each checkpoint a single

gradient descent iteration was run with both the clean minibatch and the poisoned minibatch

(as a proxy for the actual expert minibatch step) and the loss computed accordingly. Both

gradient steps adhered to the training hyperparameters described above. The algorithm was

run for 25 iterations through the entire dataset.

To initialize ℓ̂, we use the original one-hot labels y scaled by a temperature parameter C.
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For sufficiently large C, the two gradient steps in Fig. 4.1 will be very similar except for the

changes in the poisoned examples, leading to a low initial value of Lparam. However if C is

too large, we suffer from vanishing gradients of the softmax. Therefore C must be chosen to

balance these two concerns.

A.4 Compute

All of our experiments were done on a computing cluster containing NVIDIA A40 and

2080ti GPUs with tasks split roughly evenly between the two. To compute all of our

numbers (averaged over 10 downstream models) we ended up computing approximately

1630 downstream models, 80 sets of labels, and 300 expert models. Averaging over GPU

architecture, dataset, and model architecture, we note that each set of labels takes around

25 minutes to train. Meanwhile, each expert model takes around 10 minutes to train (fewer

epochs with a more costly weight-saving procedure) and each downstream model takes around

40. This amounts to a total of approximately 1170 GPU-hours.

We note that the number of GPU-hours for an adversary to pull off this attack is likely

significantly lower since they would need to compute as few as a single expert model (10

minutes) and a set of labels (25 minutes). This amounts to just over half of a GPU-hour given

our setup (subject to hardware), a surprisingly low sum for an attack of this high potency.



40

Appendix B

COMPLETE EXPERIMENTAL RESULTS

In this section, we provide expanded versions of the key tables in the main text complete

with standard errors as well as some additional supplementary material. As in the main text,

we compute our numbers via a three step process: (1) we start by training 5 sets of synthetic

labels for each (dataset, expert model architecture, trigger) tuple, (2) we then aggregate each

set of labels, and (3) we finish by training 10 downstream models on each interpolation of

the aggregated labels and the ground truths.

For our FLIP experiments in Appendix B.1, labels are aggregated using the margin strategy

described in Section 4.3, and interpolated on the number of flipped labels. Meanwhile, for

our softFLIP results in Appendix B.2, we aggregate as in Section 4.3.1 by taking the average

logits for each image and linearly interpolating them on parameter α with the ground-truth

labels.

B.1 Experiments: Crowdsourced Labeling

Fig. 1.2, Fig. 5.2a, and Table 5.1 showcase FLIP’s performance when compared to a dot-

product-based baseline and in relation to changes in dataset, model architecture, and trigger.

In this section, we provide expanded versions of those results and present the raw numbers

for the dot-product baseline.

B.2 Experiments: Distillation

Fig. 5.2b and Table 5.3 showcase softFLIP in comparison to discrete label flips and in relation

to changes in dataset, model architecture, and trigger. In this section, we provide expanded

versions of those results with standard errors and an additional table showcasing the numbers
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150 300 500 1000 1500

CIFAR-10
r32

s 92.26 (0.1)
/
12.4 (1.8) 92.09 (0.1)

/
54.9 (2.4) 91.73 (0.1)

/
87.2 (1.3) 90.68 (0.1)

/
99.4 (0.2) 89.87 (0.1)

/
99.8 (0.1)

t 92.37 (0.0)
/
28.4 (4.9) 92.03 (0.0)

/
95.3 (1.5) 91.59 (0.1)

/
99.6 (0.2) 90.80 (0.1)

/
99.5 (0.3) 89.91 (0.1)

/
99.9 (0.1)

p 92.24 (0.1)
/
03.3 (0.2) 91.67 (0.0)

/
06.0 (0.2) 91.24 (0.1)

/
10.8 (0.3) 90.00 (0.1)

/
21.2 (0.3) 88.92 (0.1)

/
29.9 (0.8)

r18 s 94.13 (0.1)
/
13.1 (2.0) 93.94 (0.1)

/
32.2 (2.6) 93.55 (0.1)

/
49.0 (3.1) 92.73 (0.1)

/
81.2 (2.7) 92.17 (0.1)

/
82.4 (2.6)

CIFAR-100
r32 s 78.83 (0.1)

/
08.2 (0.6) 78.69 (0.1)

/
24.7 (1.3) 78.52 (0.1)

/
45.4 (1.9) 77.61 (0.1)

/
82.2 (2.5) 76.64 (0.1)

/
95.2 (0.3)

r18 s 82.87 (0.1)
/
11.9 (0.8) 82.48 (0.2)

/
29.9 (3.1) 81.91 (0.2)

/
35.8 (3.1) 81.25 (0.1)

/
81.9 (1.5) 80.28 (0.3)

/
95.3 (0.5)

Table B.1: An expanded version of Table 5.1 in which each point is averaged over 10

downstream training runs and standard errors are shown in parentheses.

500 1000 2500 5000 10000 15000 20000

91.90 (0.1)
/
01.2 (0.1) 91.31 (0.1)

/
02.7 (0.2) 88.87 (0.1)

/
10.5 (0.8) 84.80 (0.1)

/
30.8 (2.6) 76.09 (0.1)

/
59.5 (4.5) 66.34 (0.3)

/
82.8 (1.7) 56.53 (0.3)

/
91.1 (1.7)

Table B.2: Raw numbers for the baseline as presented in Fig. 1.2. The baseline was run

on ResNet-32s with comparisons to the sinusoidal trigger. Each point is averaged over 10

downstream training runs and standard errors are shown in parentheses.

for the discretized version of softFLIP.

0.0 0.2 0.4 0.6 0.8 0.9

r32
s 90.04 (0.1)

/
100. (0.0) 90.08 (0.0)

/
100. (0.0) 90.11 (0.1)

/
100. (0.0) 90.45 (0.1)

/
99.9 (0.0) 91.02 (0.0)

/
99.0 (0.1) 91.95 (0.0)

/
25.3 (3.0)

t 88.05 (0.1)
/
100. (0.0) 88.43 (0.1)

/
100. (0.0) 88.44 (0.1)

/
100. (0.0) 88.99 (0.1)

/
100. (0.0) 89.86 (0.1)

/
100. (0.0) 90.85 (0.0)

/
100. (0.0)

p 88.02 (0.1)
/
44.5 (0.4) 88.26 (0.1)

/
41.9 (0.4) 88.62 (0.1)

/
38.8 (0.5) 89.10 (0.1)

/
31.1 (0.4) 91.64 (0.1)

/
05.1 (0.3) 92.04 (0.1)

/
00.1 (0.0)

r18 s 92.97 (0.1)
/
98.7 (0.3) 92.92 (0.1)

/
97.3 (1.3) 93.13 (0.1)

/
96.0 (2.1) 93.25 (0.1)

/
95.6 (0.9) 93.67 (0.1)

/
86.1 (1.4) 93.91 (0.1)

/
33.6 (4.9)

Table B.3: An expanded version of Table 5.3 in which each point is averaged over 10

downstream training runs and standard errors are shown in parentheses.

B.3 Ablations: Downstream Model and Optimizer

Table 6.1 investigates whether an attacker needs to know the architecture or optimizer of the

user’s downstream model. In this section, we provide expanded versions of those results with

serror bars. The experiments are done in the same style as Appendix B.1.
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0.0 0.2 0.4 0.6 0.8 0.9

r32
s 89.82 (0.1)

/
100. (0.0) 89.78 (0.1)

/
99.9 (0.0) 90.00 (0.1)

/
99.9 (0.0) 90.25 (0.1)

/
99.9 (0.0) 91.08 (0.1)

/
99.0 (0.2) 92.21 (0.1)

/
29.2 (2.9)

t 87.30 (0.1)
/
99.6 (0.4) 87.47 (0.1)

/
99.8 (0.1) 87.83 (0.1)

/
100. (0.0) 88.52 (0.1)

/
100. (0.0) 89.76 (0.1)

/
99.3 (0.4) 91.27 (0.1)

/
100. (0.0)

p 87.88 (0.1)
/
42.1 (0.6) 88.09 (0.1)

/
39.7 (0.3) 88.45 (0.1)

/
36.5 (0.8) 89.22 (0.1)

/
29.9 (0.4) 91.53 (0.1)

/
07.9 (0.3) 92.53 (0.0)

/
00.1 (0.0)

r18 s 92.59 (0.1)
/
95.2 (1.1) 92.82 (0.1)

/
92.6 (2.1) 92.87 (0.1)

/
89.7 (1.5) 93.25 (0.0)

/
90.0 (2.1) 93.56 (0.1)

/
57.3 (2.5) 94.12 (0.1)

/
03.9 (0.4)

Table B.4: A discretized version of Table B.3, in which the labels for each point are argmaxed,

results are averaged over 10 downstream runs, and the errors are shown in parentheses.

150 300 500 1000 1500

r18 →
r32

92.44 (0.1)
/
19.2 (1.3) 92.16 (0.1)

/
53.3 (3.0) 91.84 (0.0)

/
74.5 (2.2) 90.80 (0.1)

/
92.9 (0.8) 90.00 (0.1)

/
95.2 (0.6)

r32 →
r32

92.26 (0.1)
/
12.4 (1.8) 92.09 (0.1)

/
54.9 (2.4) 91.73 (0.1)

/
87.2 (1.3) 90.68 (0.1)

/
99.4 (0.2) 89.87 (0.1)

/
99.8 (0.1)

r32 →
r18

93.86 (0.1)
/
04.8 (0.8) 93.89 (0.1)

/
36.0 (5.4) 93.56 (0.1)

/
60.0 (6.6) 92.76 (0.1)

/
86.9 (2.6) 91.75 (0.1)

/
98.0 (0.8)

r18 →
r18

94.13 (0.1)
/
13.1 (2.0) 93.94 (0.1)

/
32.2 (2.6) 93.55 (0.1)

/
49.0 (3.1) 92.73 (0.1)

/
81.2 (2.7) 92.17 (0.1)

/
82.4 (2.6)

Table B.5: An expanded version of Table 6.1 (1) in which each point is averaged over 10

downstream training runs and standard errors are shown in parentheses. We additionally

compare the performance directly to the non-model-mixed case.

150 300 500 1000 1500

r32
s 90.79 (0.1)

/
11.8 (1.6) 90.50 (0.1)

/
43.2 (3.8) 90.08 (0.1)

/
80.6 (2.2) 89.45 (0.1)

/
97.5 (0.3) 88.33 (0.1)

/
99.0 (0.3)

t 90.77 (0.1)
/
08.4 (1.3) 90.46 (0.1)

/
65.0 (6.8) 90.00 (0.1)

/
72.7 (5.7) 89.07 (0.1)

/
98.2 (1.1) 88.23 (0.1)

/
95.8 (2.5)

p 90.60 (0.0)
/
03.0 (0.3) 90.21 (0.1)

/
05.5 (0.3) 89.61 (0.1)

/
11.1 (0.7) 88.55 (0.1)

/
19.5 (0.6) 87.39 (0.1)

/
31.6 (0.8)

r18 s 93.17 (0.1)
/
20.3 (2.2) 93.08 (0.1)

/
47.0 (2.6) 92.94 (0.0)

/
65.6 (1.6) 91.91 (0.1)

/
89.9 (1.0) 91.16 (0.1)

/
93.1 (0.7)

Table B.6: An expanded version of Table 6.1 (2) in which each point is averaged over 10

downstream training runs and standard errors are shown in parentheses. We additionally

evaluate different choices of trigger with ResNet-32s.

150 300 500 1000 1500

r32 →
r18

93.32 (0.1)
/
09.4 (1.5) 93.05 (0.1)

/
52.9 (3.0) 92.70 (0.1)

/
85.3 (1.7) 91.72 (0.1)

/
99.2 (0.2) 90.93 (0.1)

/
99.7 (0.1)

r18 →
r32

90.86 (0.1)
/
12.3 (1.3) 90.57 (0.1)

/
40.9 (3.3) 90.28 (0.1)

/
59.7 (2.6) 89.39 (0.1)

/
83.0 (1.7) 88.59 (0.1)

/
89.2 (0.7)

Table B.7: An expanded version of Table 6.1 (1+2) in which each point is averaged over 10

downstream training runs and standard errors are shown in parentheses.
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Appendix C

FURTHER ABLATIONS

C.1 Number of Experts

For all of the above experiments we used 50 experts to create our labels, however, as we

show in Table C.1 and Fig. C.1, while small numbers of experts were perhaps more volatile, a

potent attack could be achieved with as few as a single expert model. This greatly increases

the attack’s feasibility.

150 300 500 1000 1500

1 92.38 (0.1)
/
09.9 (0.5) 92.05 (0.0)

/
45.4 (2.4) 91.59 (0.0)

/
80.7 (2.7) 90.80 (0.1)

/
98.0 (0.2) 89.90 (0.1)

/
99.5 (0.1)

5 92.36 (0.0)
/
11.9 (1.1) 92.05 (0.1)

/
45.3 (3.0) 91.42 (0.1)

/
86.6 (1.2) 90.81 (0.1)

/
99.1 (0.2) 89.94 (0.0)

/
99.8 (0.1)

10 92.39 (0.1)
/
15.1 (1.6) 92.09 (0.1)

/
59.7 (2.3) 91.74 (0.0)

/
88.5 (1.5) 90.91 (0.1)

/
99.4 (0.1) 90.03 (0.1)

/
99.8 (0.1)

25 92.33 (0.1)
/
10.9 (1.1) 92.06 (0.1)

/
50.9 (2.2) 91.74 (0.1)

/
88.9 (1.2) 90.92 (0.1)

/
98.9 (0.2) 90.03 (0.0)

/
99.7 (0.0)

50 92.44 (0.0)
/
12.0 (1.6) 91.93 (0.1)

/
54.4 (3.1) 91.55 (0.1)

/
89.9 (1.1) 90.91 (0.1)

/
99.6 (0.1) 89.73 (0.1)

/
99.9 (0.0)

Table C.1: Understanding the effect of the number of expert models on downstream per-

formance. The experiments were conducted using ResNet-32s on CIFAR-10 poisoned by

the sinusoidal trigger. Horizontal and vertical error bars are averaged over 10 downstream

training runs.
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Figure C.1: The intensity-stealth trade-off as a function of the number of experts used to train

the labels. These experiments were run using the sinusoidal trigger on CIFAR-10. Horizontal

and vertical error bars are averaged over 10 downstream training runs.
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Appendix D

ALTERNATE PERSPECTIVES ON LPARAM

Given some randomly-sampled starting weights θ
(j)
k , a poisoned batch from the expert

dataset B
(j)
k = (X, y), and its clean version with our labels B̃

(j)
k = (X ′, ℓ̂b), we can define

θ
(j)
k+1 = U(θ

(j)
k ; b), and ϕ

(j)
k+1 = U(θ

(j)
k ; b′) for gradient update rule U(·). Our parameter loss,

then, is the mean squared error (MSE) of the parameters induced by these two gradient steps,

divided by poison-step distance:

Lparam =
∥θ(j)k+1 − ϕ

(j)
k+1∥2

∥θ(j)k+1 − θ
(j)
k ∥2

.

Now, consider U(θj) := θj − η∇Lexpert(θj) to be the standard mini-batch gradient descent

update rule with learning rate η and expert loss function Lexpert. For clarity, letting p :=

∇Lexpert(θ
(j)
k ;B

(j)
k ) be the poison gradient and u := ∇Lexpert(θ

(j)
k ; B̃

(j)
k ) be the gradient on our

labels, as we do in Chapter 7, we have that:

∥θj+1 − ϕj+1∥2
∥θj+1 − θj∥2

=
∥p− u∥2

∥p∥2
= 1− ∥u∥∥p∥ (2 cosx−

∥u∥
∥p∥ ),

for x representing the angle between vectors p and q. As such, our loss can be viewed as an

adjusted MSE loss on the gradients as well as a variation on cosine distance.
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